POZNAN UNIVERSITY OF TECHNOLOGY

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)

pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

COURSE DESCRIPTION CARD - SYLLABUS

Course name

Identification of Organic Compounds

Course

Field of study Year/Semester

Environmental Protection Technologies III/5

Area of study (specialization) Profile of study

- general academic
Level of study Course offered in

First-cycle studies Polish

Form of study Requirements

full-time compulsory

Number of hours

Lecture Laboratory classes Other (e.g. online)

0 0

Tutorials Projects/seminars

0 0

Number of credit points

1

Lecturers

Responsible for the course/lecturer: Responsible for the course/lecturer:

prof. dr hab. inż. Adam Voelkel

Prerequisites

Basic physical, inorganic, organic and analytical chemistry on academic level; Can use basic laboratory techniques of separation and cleaning of chemical compounds

Course objective

Gaining the skills of the application of spectroscopic methods for identification of organic compounds and determination of their structure.

Course-related learning outcomes

Knowledge

- 1. knowledge in the field of techniques, methods connected with identification of organic pollutants in the environment [K_W07,K_W09]
- 2. can describe methods, techniques, tools and materials used for the solution of simple problems connected with identification of substances during solving the problems connected with the field of study [K_W05, K_W12, K_W13]

POZNAN UNIVERSITY OF TECHNOLOGY

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)

pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

Skills

- 1. Student can select the proper spectroscopic technique for basic qualitative and quantitative determination of organic compounds [K_U11, K_U12, K_U13]
- 2. has basic skills for maintenance of basic tools (methods) for solving the problem in the field of environment analysis [K_U15, K_U18]
- 3. Student can use specialist English . [K_U03, K_U05, K_U08]

Social competences

Student understands the need to supplement her/his education and increasing professional competences. - [K_K01]

- 2. Student has the awareness to obey the engineer ethic rules. [K_K02, K_K05]
- 3. Student can act and cooperate in the group accepting different roles. [K KO3]

Methods for verifying learning outcomes and assessment criteria

Learning outcomes presented above are verified as follows:

written control work

Programme content

Problems of the course are connected with the application of the interaction of electromagnetic radiation with the molecules of organic compounds and its use for identification of organic species. The theoretical background enabling the understanding the rules of UV/VIS spectroscopy, IR, NMR and MS. The possibilities and limitations of these techniques are presented and discussed. Sample preparation methods are discussed. Experimental technique is presented on level enabling the self-maintenance of popular equipment and contact with the operator of more sophisticated equipment..

Teaching methods

lecture

Bibliography

Basic

- 1. Spektroskopowe metody identyfikacji związków organicznych, R.M. Silverstein,
 - F.X. Webster, D.J. Kremle, PWN, Warszawa, 2007
- 2. Metody spektroskopowe wyznaczania struktury związków organicznych, L.A. Kazicyna,
 - N.B. Kupletska, PWN, Warszawa, 1974
- 3. Określanie struktury związków organicznych metodami spektroskopowymi, M. Szafran,
 - Z. Dega-Szafran, PWN, Warszawa, 1988

POZNAN UNIVERSITY OF TECHNOLOGY

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)

pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

- 4. Metody spektroskopowe i ich zastosowanie do identyfikacji związków organicznych,
 - W. Zieliński, praca zbiorowa, WNT, Warszawa, 1995.
- 5. Spektroskopia mas związków organicznych, A. Płaziak, wyd. UAM, Poznań, 1997.

Additional

- 1. N.P.G. Roeges, A guide tot He complete interpretation of infrared spectra of organic structures, Wiley, Chichester, 1994.
- 2. J.S. Splitter, F. Turecek, Application of mass spectrometry to organic stereochemistry, VCH, New York, 1994.

Breakdown of average student's workload

	Hours	ECTS
Total workload	40	1,0
Classes requiring direct contact with the teacher	30	0,8
Student's own work (literature studies, preparation for tests/exam) ¹	10	0,2

_

¹ delete or add other activities as appropriate